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We often engage in two concurrent but unrelated activities, such as
driving on a quiet road while listening to the radio. When we do so,
does our brain split into functionally distinct entities? To address
this question, we imaged brain activity with fMRI in experienced
drivers engaged in a driving simulator while listening either to
global positioning system instructions (integrated task) or to a radio
show (split task). We found that, compared with the integrated
task, the split task was characterized by reduced multivariate func-
tional connectivity between the driving and listening networks. Fur-
thermore, the integrated information content of the two networks,
predicting their joint dynamics above and beyond their independent
dynamics, was high in the integrated task and zero in the split task.
Finally, individual subjects’ ability to switch between high and low
information integration predicted their driving performance across
integrated and split tasks. This study raises the possibility that under
certain conditions of daily life, a single brain may support two in-
dependent functional streams, a “functional split brain” similar to
what is observed in patients with an anatomical split.

information integration | consciousness | split brain | dual task | fMRI

Aremarkable finding in neuroscience is that after the two cere-
bral hemispheres are disconnected to reduce epileptic seizures

through the surgical sectioning of around 200 million connections,
patients continue to behave in a largely normal manner (1). Just as
remarkably, subsequent experiments have shown that after the split-
brain operation, two separate streams of consciousness coexist within
a single brain, one per hemisphere (2, 3). For example, in many such
studies, each hemisphere can successfully perform various cognitive
tasks, including binary decisions (4) or visual attentional search (5),
independent of the other, as well as report on what it experiences.
Intriguingly, anatomical split brains can even perform better than
controls in some dual-task conditions (6, 7). On the other hand, the
integration of information between the two hemispheres breaks
down (4), such that one hemisphere is not conscious of what the
other one is perceiving and thinking (8). Recent studies have pro-
vided neurophysiological evidence consistent with the anatomical
disconnection, such as a decrease in fMRI functional connectivity
between the left and right hemispheres in human patients with a split
brain and in animals that underwent surgical callosotomy (9–11).
In the present study, we asked whether it is possible to obtain a

functional split, rather than an anatomical one, in the healthy hu-
man brain. During most situations of daily life, our brain functions
as a unitary system, which is usually a good thing. Consider listening
to global positioning system (GPS) instructions when driving in a
foreign city: To arrive at the right destination, the auditory in-
structions should be heard by the same system that sees the visual
input and decides on the course of action. Even so, most of us are
familiar with some situations in which we seem to undergo a
functional split. Consider driving on a quiet road while listening to
an engaging radio show: At times, it is as if two separate functional
streams were coexisting within the same brain, one doing the driving
and one doing the listening. We usually identify with the listener,
because we usually attend to the story we hear, reflect on it, and
commit it to memory. By contrast, driving seems to proceed as on
autopilot, with no need for attention, reflection, or memory as long
as the road is smooth and unchallenging. What happens within our
brain during these two conditions? Do the interactions between

brain networks involved in driving and listening change when we are
performing an integrated task, such as following GPS instructions,
compared with a split task, such as driving and listening to a radio
show? Can we find evidence for functional integration in the case of
GPS instructions and for a functional split in the case of the radio
show? Finally, can we determine if integrated information between
the driving and listening networks is helpful in the GPS task but
perhaps harmful when the driving and listening tasks are completely
independent, as with the radio show?
To find out, we asked highly trained healthy subjects to perform

simulated driving in an fMRI scanner while listening to either GPS
instructions or a radio show. We chose driving and listening be-
cause of their frequent dissociation during daily life, and because
the networks underlying driving and listening performance are
known to be partially segregated in the human brain (12). We
carefully ensured that task performance and overall levels of brain
activation would be comparable in the integrated and split driving
tasks. Finally, we developed multivariate measures of functional
connectivity and integrated information to evaluate the interac-
tions between driving and listening networks during the integrated
and split task conditions.

Results
Behavior. We imaged brain activity in 13 experienced drivers in a
driving simulator (Fig. 1). Subjects underwent an fMRI session
and were instructed to drive following GPS instructions (in-
tegrated task) or while listening to a radio show (split task). The
task difficulty, arousal level, and driving performance (measured
as the mean deviation from the track centerline subtracted from
the theoretical upper bound) did not significantly differ between
the integrated and split tasks (Fig. 2 A–C; task difficulty: t = 0.64,
P = 0.54; drowsiness: t = 0.69, P = 0.50; driving performance: t =
0.80, P = 0.44). Furthermore, there was no significant difference

Significance

When one drives on an easy route and listens to a radio, it is at
times as if one’s brain splits into two separate entities: one that
drives and one that listens. When, instead, one drives while lis-
tening to a global positioning system, there is only one func-
tional stream. Here, using measures of information integration,
we show that a brain may functionally split into two separate
“driving” and “listening” systems when the listening task is
unrelated to concurrent driving, but not when the two systems
are related. This finding raises the possibility that under certain
conditions of daily life, a single brain may support two in-
dependent functional streams, a “functional split brain” similar
to what is observed in patients with an anatomical split.
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in listening comprehension scores between sessions where sub-
jects were just listening to the radio or listening while driving
(Fig. 2D; t = 0.77, P = 0.46). Nonparametric permutation results
are reported in Table S1.

Selection of Networks of Interest. Fig. 3A shows the block design
paradigms used to identify the driving and listening networks.
The “driving network” was defined as the set of areas showing
significant activation during at least one block design involving
driving. The “listening network” was selected as the set of areas
showing significant activation during at least one block design
involving listening to either the GPS or the radio show. A small
number of voxels overlapping between the two networks were
discarded from further analyses (Table S2). The driving and
listening networks showed similar activation levels in the in-
tegrated and split tasks during block design conditions (Fig. 3B;
driving network: t = −1.49, P = 0.17; listening network: t = −0.25,
P = 0.81; combination: t = −1.06, P = 0.31; also Table S1).

Multivariate Integration. To assess neural interactions during the
integrated driving/listening task compared with the split version,
we designed a measure of between-network multivariate state
shifts. The rationale behind this measure is that when networks
cooperate during the integrated task, multivariate changes in ac-
tivity in one network should be accompanied by corresponding
multivariate changes in activity in the other one, irrespective of
univariate changes. For example, in the congruent driving task, a
new auditory instruction given by the GPS (e.g., turn left now) will
likely trigger a new activity pattern in the listening network. In
turn, the new instruction will lead to new motor commands and
associated visual inputs, which will likely trigger a new activity
pattern in the driving network. Over multiple instructions, the
multivariate changes in activity patterns over the two networks
should be correlated. Univariate correlations between the two
networks, triggered, for example, by particular frequencies in the
auditory instructions and by particular colors in the visual input,
are less likely to be correlated and less sensitive to low-amplitude
but spatially coherent changes. Nevertheless, both multivariate
and univariate correlations should be lower during the split task.

As a measure of multivariate integration, we measured the
similarity of changes in multivariate blood oxygen level-dependent
patterns across time within the driving and the listening networks
and compared it between the integrated and split tasks (Fig. 4A).
As predicted, the between-networks state-shift similarity was sig-
nificantly higher during the integrated task compared with the split
task (t = 3.63, P = 0.002; Fig. 4B and also Table S1). Multivariate
integration changes between the driving and listening networks
were consistent across frontal, parietal, and occipital areas (Fig.
S1). Fig. 4C shows that the ratio of average between-network
versus within-network univariate correlation was also higher in the
integrated task compared with the split task (t = 3.35, P = 0.0033).
Increased integration between conditions could not be explained
either by changes in physical stimuli correlation (Fig. S2) or by
changes in mean signal amplitude or movement (Table S3).

Integrated Information. Although high functional connectivity be-
tween two networks is consistent with the occurrence of cooperative
interactions, it could also be the result of common input from
shared sources. To evaluate the cooperative interactions between
the two networks explicitly, we developed a measure of integrated
information based on the improvement of multivariate prediction
by the whole network over its parts. Specifically, we used a multi-
variate least absolute shrinkage and selection operator (LASSO)
algorithm (13) to predict the future states (after one to 10 scan time
lags) of the driving and listening networks when taken together and
when taken separately (Fig. 5A). Integrated information was de-
fined as the improvement in multivariate prediction when using the
whole-system activity patterns to predict itself, compared with the
prediction accuracy obtained using driving and listening networks
separately predicting themselves. In contrast to correlation-based
measures, high values of integrated information require both high
integration and high differentiation of neural activity patterns. For
example, if the information shared between the networks were to
reflect common input, it would be redundant; hence, it would not
add to prediction accuracy. Following this rationale, we hypothe-
sized that integrated information would be higher in the integrated
task compared with the split task. As shown in Fig. 5B, the mean
integrated information over time lags was significantly greater
than zero in the integrated task (t = 3.44, P = 0.0028), but not in
the split task (t = −0.027, P = 0.51). Integrated information was
also significantly higher in the integrated task compared with
the split task (t = 2.75, P = 0.0094). Table 1 shows that this result
remained true when considering each individual time lag. Av-
erage functional connectivity values were 0.391 (t = 9.13, P <
0.001) in the integrated task and 0.294 (t = 7.43, P < 0.001)
in the split task (Fig. 5C). Mean functional connectivity was

anatomical split brain
A

Intact brain Split brain

RightLeft

Callosotomy

B

“Before going through
the tunnel, we should
change lanes. Do it
right now! The exit is
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Fig. 1. (A) Research question. In patients with an anatomically split brain, cal-
losotomy induces a breakdown of integrated information between the two
hemispheres and the creation of two distinct functional entities. During daily
life, our brain functions as a unitary system during most tasks, such as when
driving while listening to GPS instructions (integrated task). Here, we asked
whether it is possible to obtain a functional split, rather than an anatomical one,
in the healthy human brain during an incongruent task, such as driving while
listening to a radio show (split task). (B) Example of a driving simulator scene and
of auditory instructions received during the integrated and split tasks.
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Fig. 2. Behavioral results. Group average of subjective ratings of task dif-
ficulty (A) and drowsiness (B) during the integrated and split tasks. Ratings
ranged from 1 (minimum) to 10 (maximum). (C) Group average of the driving
performance in the integrated and split task conditions. The driving perfor-
mance was defined as the deviation from the centerline of the track. (D) Group
average of scores in listening comprehension tests (out of 10 items). No sig-
nificant difference (n.s.) was found in any of the behavioral measures between
the integrated and split task conditions.
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significantly higher in the integrated task compared with the
split task (t = 2.50, P = 0.015; also Table S1). Interestingly,
integrated information was greater than zero during resting
state scans and in all single task scans; only in the split condi-
tion did it decrease to a zero mean (Fig. S3 and SI Discussion).
Fig. S3 reports increased multivariate integration, integrated
information, and average functional connectivity values during
resting state tasks and single tasks compared with the split
task condition.
Multivariate integration and integrated information measures

remained virtually unchanged after removing time periods con-
taining spatial attention instructions unrelated to driving (Fig. S4
and SI Discussion). Moreover, excluding occipital time series
from the analysis did not modify the results (Fig. S5).

Integrated Information and Behavior.We further hypothesized that
integrated information would be predictive of driving performance.
As shown in Fig. 6A, integrated information was positively corre-
lated with performance in the integrated task (r = 0.65, P = 0.032).

This result suggests that in the integrated condition, when auditory
information is used to navigate the road, cooperative interactions
between the two networks can help performance. Conversely, we
found trend toward a negative correlation between integrated in-
formation and performance during the split task (Fig. 6B; r = −0.4,
P = 0.22), suggesting that interactions between the two networks
might hinder, rather than improve, performance in this case.
Finally, we hypothesized that the subjects who would be best

able to switch between high integrated information between the
driving and listening networks during the integrated task and low
integrated information during the split task would be best at
maintaining a consistently high performance across tasks. As shown
in Fig. 6C, a within-subjects analysis shows that a high differential
in integrated information between the integrated and split tasks
predicted high sustained performance in both tasks (significant
correlation of r = 0.8 with P = 0.0031). These results held true after
controlling for individual average frame-wise displacement (14, 15)
(Table S4). Measures of functional connectivity or network activity
did not show such a correlation with performance (Fig. S6).

Discussion
We developed a driving while listening paradigm aimed at in-
ducing a functional split-brain condition in healthy human
subjects. We assessed multivariate functional connectivity and
integrated information between brain networks involved in driving
and listening during an integrated task, when subjects drove fol-
lowing GPS instructions, and during a split task, when they drove
while listening to a radio show. We found that the integration
between the two networks, assessed through a multivariate mea-
sure of functional connectivity based on coordinated shifts of
multivoxel patterns across time, was higher in the integrated task
compared with the split task. Furthermore, the integration of in-
formation between the two networks, assessed by the improve-
ment in prediction accuracy of the joint dynamics of the two
networks over their independent dynamics, was high in the in-
tegrated task and zero in the split task. Finally, subjects who were
better at switching between high and low integrated information
depending on the task had a better overall driving performance.
Because our aim was to characterize changes in between-

network interactions, we ensured that behavioral performance
and brain activation did not differ between the integrated and
split tasks by choosing relatively easy tasks; long, continuous
performance reproducing daily life situations; and highly trained
subjects (SI Discussion). We did not ceil the performance or use
any other way to equate the driving performance artificially
between tasks. Under different conditions, fMRI studies have
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revealed changes in brain activation, such as reduced activity
in driving networks when driving while performing a sentence
comprehension task (16, 17). Similarly, under more challenging
conditions, driving while listening to someone speak can induce a
decrease in driving accuracy (16), reminiscent of the decrease in
performance in cross-modal tasks when stimuli are incongruent
(18). Such an effect of congruency on task performance has also
been found during working memory and Stroop tasks (19).
To compare neural interactions during the integrated driving/

listening task compared with the split version, we designed a mea-
sure that would be sensitive to correlated multivariate state shifts
between the two networks. Previous studies used correlations in
whole-brain multivariate activity patterns to identify temporally
clustered brain states, such as the presence of microstates in the
EEG (20) or task-positive/negative states in whole-brain fMRI
(21, 22). The method used here differs from previous attempts
by measuring correlated changes in network multivariate patterns
(MVPs) over time (pattern shifts) to quantify between-network
functional integration. As predicted, the multivariate correlation
between activity patterns in the two networks was higher in the
integrated task compared with the split task. This result held true
when frontal, parietal, and occipital anatomical subdivisions of the
driving network were considered separately. Between-network uni-
variate correlations were also higher in the integrated task than in
the split task, suggesting that task-dependent integration is robust.
In line with these results, previous studies using univariate measures
have shown, for example, that the functional connectivity between
default and attention networks increases in a memory recollection
task (23) or during creative thinking (24) compared with an external
attention task. Altogether, the finding of decreased functional con-
nectivity between driving and listening networks in our split task is
consistent with the decreased functional connectivity between the
two hemispheres observed in human patients with a split brain (9),
as well as in monkeys and rats after surgical callosotomy (10, 11).
We further determined that in the integrated task, the driving

and listening networks were “informationally integrated”; that is,
the whole system predicted its future states better than its parts

separately. By contrast, during the split task, the driving and lis-
tening networks were “informationally split”; the whole system
did not predict itself better than the sum of its parts. For both the
integrated and split tasks, integrated information was defined as
the ratio between the prediction error obtained with the driving or
listening subsystem separately predicting itself over the prediction
error obtained with both the driving and listening systems jointly
predicting themselves. The same number of time course features
was used in the prediction algorithm for both the integrated and
split task conditions (Figs. S7 and S8 and SI Discussion). In es-
sence, integrated information captures how much better the sys-
tem, as a whole, can predict itself compared with the sum of its
parts. Unlike measures of correlation and integration, measures of
integrated information are insensitive to common input and are,
instead, sensitive to the information value of neural activity pat-
terns in predicting their own time course. Differences between
integrated information and informational connectivity measures
(25, 26) are discussed in SI Discussion.
In the split task condition, average functional connectivity values

were decreased to the range observed in anatomical split brains (0.3
correlation mean) (9). Ultimately, however, integrated information
was the only measure that both revealed a functional split between
networks in the split condition and correlated with behavior. We
found that highly integrated information predicted an optimal
performance during the integrated task. Moreover, the ability of
individual subjects to reorganize between high and low information
integration states across tasks was correlated with the individual
subject’s ability to maintain a consistently high driving performance.
In contrast, correlation-based measures and network activity levels
did not predict performance. A possible caveat is that derivatives of
Granger causality, such as the LASSO prediction algorithm used
here, could be affected by regional differences in the hemodynamic
response function (27). However, it is unlikely that neurovascular
coupling would differ between the integrated and split tasks.
An intriguing question is what happens to consciousness when

driving while listening in the split condition. Is there a single con-
scious stream, with attention deployed primarily to a dominant
task, typically listening, and much less to driving? Alternatively, does
driving become unconscious, as on autopilot? Or, does a normally
integrated conscious stream split into two separate conscious streams
that coexist within the same brain, as indicated by studies of patients
with an anatomically split brain? Integrated information is thought
to be essential for consciousness (28), and the reduction of in-
tegrated information demonstrated here is at least compatible with a
split in consciousness. Moreover, the finding that patients with a split
brain can perform split tasks better than normal individuals when the
two tasks are independent (6, 7) is similar to our finding that a
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also significantly higher in the integrated task compared with the split task.
(C) Average functional connectivity values in the integrated versus split task
conditions.

Table 1. Robustness of integrated information estimates over
time lags

Time-lag (TR)

Integrated task Split task

t scores P values t scores P values

1 3.525 0.0024*** 1.177 0.132
2 1.762 0.0529+ 0.7121 0.2456
3 1.9794 0.0367* −1.3975 0.9051
4 2.8673 0.0077** −3.2532 0.9962
5 2.2944 0.0212* −1.3969 0.905
6 2.6356 0.0116* −0.1526 0.5592
7 3.2519 0.0039*** 0.6029 0.2794
8 3.2543 0.0038*** 0.6251 0.2723
9 2.3938 0.0178* 0.4314 0.3372
10 2.3137 0.0205* 0.9631 0.1781

Statistical significance for integrated information between the driving
and listening networks, estimated using 1–10 TR time lags.
+P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.005.
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functional split between the driving and listening networks favors
performance in the split task, whereas functional integration impairs
it. Future work will examine whether, as predicted by theoretical
considerations about the substrate of consciousness, the functional
split brain observed in the split task is associated with a transition
from one to two maxima of integrated information, and thus from
one to two streams of consciousness (28).

Materials and Methods
Participants. Thirteen healthy male (22–34 y of age) experienced drivers par-
ticipated in the study. All subjects provided informed consent following the
procedures approved by the Health Sciences Institutional Review Board of the
University ofWisconsin–Madison. Before the experiments, subjects practiced in
a driving simulator until driving performance became stable. Subjects per-
formed the same simulated driving task used in the fMRI experiment with the
goal of minimizing the deviation from the simulated track centerline.

Experimental Paradigm. All subjects completed fMRI sessions consisting of two
tasks of interest and three localizer tasks. During the tasks of interest, subjectswere
asked to drive (i) while following GPS instructions (integrated task) or (ii) while
listening to a radio show (split task). The three localizer tasks were designed to
identify brain regions separately involved in driving versus listening. Subjects
(iii) played the simulator alone (driving task), (iv) listened to GPS instructions
alone (GPS task), or (v) listened to radio show alone (radio task). All tasks were
first performed steadily for 5 min (steady-state design) and then repeated in
five additional sessions consisting of five 1-min task periods separated by 30-s
resting periods (block design). The block design tasks were performed in a
semirandomized order. First of all, all patients performed the single driving
task. Half of the subjects then performed the split task, the integrated task,
and then the radio show and GPS conditions. The other half performed the
integrated task, the split task, and then the GPS and radio show conditions.

Stimuli. A two-lane highway track without junctions or other vehicles was used
(Racer; www.racer.nl/). Subjects were instructed to change lanes when being
directed by the GPS in the integrated task or when passing designated objects
(road signs and call boxes) at sides of the track in the split and driving-alone
tasks. The number of lane switches was set to be the same among all tasks.

All auditory stimuli were prepared by recording the same female voice.
The narrative GPS guidance stimuli consisted not only of directions to make
subjects switch lanes but also directions calling attention to the objects on the
track. The radio show scripts were made of samples extracted from online
articles, and included various topics unrelated to the driving task.

Behavioral Measures. Subjects reported task difficulty and drowsiness after
each task condition. In addition, listening comprehension tests consisting of 10
questions were completed after task conditions involving auditory stimuli to
confirm that the concurrent execution of driving did not affect listening
comprehension. Two behavioral measures were quantified for the driving task.
First, the driving performance was defined as the difference between themean
deviation from the track centerline compared with a theoretical upper bound.
Second, the subjects’ overall driving skill was defined as the first principal

component of the driving performance (explaining over 96% of total variance)
across the split and integrated tasks. The driving performance of one subject
was not used in the analysis due to a failure of storing the driving record.

fMRI Data Acquisition. The fMRI time series were acquired using a 3-T GE MR
scanner. Multislice T2*-weighted fMRI images [repetition time (TR) = 1,100 ms,
echo time (TE) = 14 ms, 29 slices, with a slice thickness of 4 mm and an
interslice gap of 1 mm] and a structural T1-weighted sequence were acquired
in each subject. A time series of 300/437 volumes was acquired for each con-
dition of steady task/block task design. A high-resolution T1 image (parame-
ters: TR = 8.16 ms, TE = 3.18 ms, inversion time (TI) = 450 ms, 156 slices, with a
slice thickness of 1 mm) was also acquired in each volunteer at the end of the
whole experiment for coregistration to the functional data. During data ac-
quisition, subjects wore earphones in combination with earplugs and re-
mained in a comfortable supine position.

fMRI Data Preprocessing.All fMRI images were motion-corrected, slice timing-
corrected, and spatially smoothed (FWHM = 5 mm) using the SPM8 package
(Wellcome Department of Imaging Neuroscience, Wellcome Trust Centre for
Neuroimaging, London, United Kingdom). A frame-wise displacement over
0.15 mm was used to identify spike events. The dataset of one subject was
excluded from further analyses because 38% of fMRI data samples in the
integrated task were diagnosed as spike events. For other subjects, identi-
fied spike events in each condition were less than 15%.

Network Selection. We identified the driving and listening networks as the
voxels activated in at least one condition involving a driving or a listening task.
For the driving network, contrast images were computed (i) for the activation
compared with baseline in the isolated driving task, (ii) for the increased acti-
vation in the split task compared with the isolated radio task, and (iii) for the
increased activation in the integrated task compared with the isolated GPS task.
For the listening network, contrast images were computed (i) for the activation
compared with baseline in the isolated radio task, (ii) for the activation com-
pared with baseline in the isolated GPS task, (iii) for the increased activation in
the split task compared with the isolated driving task, and (iv) for the increased
activation in the integrated task compared with the isolated driving task. For
each network, a random effects analysis then tested for any activation under
the global null hypothesis. Network constituents were then defined as all voxels
surviving P < 0.05 corrected using voxel-wise, family-wise error. A small number
of voxels overlapping between the driving and listening networks were dis-
carded from further analyses. We used a two-sample t test to compare average
activation values in the driving and listening networks during the integrated
versus split task block designs. Throughout this study, parametric t test analyses
were confirmed by nonparametric permutation tests (reported in Table S1).

Multivariate Integration: Correlation of MVP Shifts. Recent studies have shown
that consistent multivoxel activity patterns (MVPs) are present with the same
task stimuli (29, 30). Thus, task-related transient state changes in a network
should be reflected by a temporal shift in MVP. We defined a multivariate
measure of functional integration (MVP shift similarity) based on the corre-
lation of MVP shifts within the driving and listening networks during each
task. Before calculating the index, the signals from white matter and ventricle

-0.02 -0.01 0 0.01

0.0602

0.0604

0.0606

0.0608

0.061

0.0612

0.0614
r = -0.4 (p=0.22)

integrated information

d
ri

vi
n

g
 p

er
fo

rm
an

ce
(s

pl
it 

ta
sk

)

B

-0.01 0 0.01 0.02 0.03

0.06

0.0602

0.0604

0.0606

0.0608

0.061

0.0612

0.0614
r = 0.65 (p=0.032)

integrated information

d
ri

vi
n

g
 p

er
fo

rm
an

ce
(in

te
gr

at
ed

 ta
sk

)
A C

-0.01 0 0.01 0.02 0.03

0.0845

0.085

0.0855

0.086

r = 0.8 (p=0.0031)

Δ integrated information
([integrated information in integrated task] 

- [integrated information in split task])

d
ri

vi
n

g
 s

ki
ll

Fig. 6. Correlation between integrated information and driving performance. Although a positive correlation was found in the integrated task (A), a trend
toward a negative correlation was observed in the split task (B). (C) Significant correlation between the overall driving performances across tasks, which we
call “driving skill,” with difference in integrated information between tasks (Δ integrated information).

14448 | www.pnas.org/cgi/doi/10.1073/pnas.1613200113 Sasai et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
13

, 2
02

1 

http://www.racer.nl/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613200113/-/DCSupplemental/pnas.201613200SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/doi/10.1073/pnas.1613200113


www.manaraa.com

regions of interest (ROIs), six motion-correction parameters, spike regressors, a
linear trend, and a vector of mean signal intensity were removed from voxel-
wise signals. After linear regression, all time series were band-pass–filtered
(0.01–0.45 Hz). For each network, we then calculated a state-shift matrix
whose elements are Euclidian distances of MVPs between any different time
points during a task (Fig. 4A). By calculating the 2D correlation between those
matrices, we obtained the pattern-wise similarity of state shifts between
driving and listening networks in each condition. After converting these values
to z-scores using the Fisher transform, group means of pattern-shift similarity
were compared using a t test between the integrated and split task conditions.

To quantify average voxel-wise connectivity between networks further,
the mean zero-lag cross-correlation of all pairs of voxels between driving and
listening networks was divided by the mean zero-lag cross-correlation of all
pairs of voxels within these ROIs (normalized internetwork correlation; Fig.
4C). This measure was applied on the same voxel-wise signals used for
multivariate connectivity analysis. After converting these values to z-scores
using the Fisher transform, group means of the normalized internetwork
correlation were compared using a t test between integrated and split tasks.

Integrated Information Analysis. Integrated information is the information
content specified by a system above and beyond its parts (31). Here, we used as a
practical measure of integrated information the increased ability for the whole
system to predict its own future behavior compared with the prediction
obtained using only its parts. High values of integrated information require both
high integration and high differentiation (32). Previous practical measures of
integrated information (33, 34), based on mutual information, can be biased
toward mainly capturing correlation in the presence of a limited number of data
time points, which is necessarily the case with fMRI. In this study, we thus de-
veloped an index of integrated information based on multivariate prediction.

Before multivariate prediction, a linear trend and a vector of mean signal
intensity were linearly removed from voxel-wise signals, and coarse-graining
was performed using a functional brain atlas (35). We then used a LASSO al-
gorithm, implementing L1-norm regularization to allow further feature ex-
traction, to maximize the accuracy of prediction. Further details of integrated
information computation are reported in SI Materials and Methods.

Weused fivefold cross-validation toestimatepredictionaccuracy robustly: Each
task condition dataset was divided into five separate subsamples. The model
fitting was then conducted in a row-wise manner, by adding the L1-regularizing
term on each row of the equation. For example, the kth row of the integrated
model becomes:

Xk,t =
Xn

j=1

AkjXj,t−τ + λikp
Xn

j=1

��Akj

��+ «ik .

The optimization of the equation was conducted through a coordinate descent
algorithm provided by Glmnet (web.stanford.edu/∼hastie/glmnet_matlab/).
The regularization coefficient λikp generating the minimum cross-validation
error for each condition was selected for final analysis. The time lag τ was
varied from 1 to 10 fMRI TRs. The mean value of integrated information over
all time lags was computed for group analysis. Post hoc t tests were then
performed on integrated information values for each time lag.

Correlation with Behavior. We computed the Pearson correlation between the
overall activation values, univariate and multivariate connectivity values, and
integrated information measures on one side and the driving performance on
the other side, in the integrated task condition versus split task condition.
Before this analysis, a d’Agostino–Pearson test ensured the normality of data
point distribution. We also computed the correlation between changes in
functional measures between conditions (for activation, connectivity, and in-
tegrated information) and the first principal component of driving perfor-
mance (driving skill) across the split and integrated task conditions. Correlation
results were considered significant at P < 0.05 in each condition.
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